UMP invariant tests for linear models
Consider a linear model $y = X\beta + \varepsilon$, where $y\in\mathbb{R}^n$, $X\in\mathbb{R}^{n\times p}$ with $p < n$, $\mathrm{rank}(X) = p$, $\beta\in\mathbb{R}^p$, and $\varepsilon\subscript{i} \sim \mathrm{i.i.d.}\, \mathcal{N}(0,\sigma^2)$ for all $i\in\{1,\dots,n\}$.
For convenience, denote $\xi := \mathrm{E}(y) = X\beta$. It holds that $\xi\in\Pi$, where $\Pi$ denotes a $p$-dimensional subspace of $\mathbb{R}^n$ (spanned by the columns of $X$).
Assume that we want to test a hypothesis of the form $\mathrm{H} : C^T \beta = 0$, where $C \in \mathbb{R}^{p\times r}$ with $r < p$ and $\mathrm{rank}(C) = r$. It holds that $C^T = B^T X$ where $B^T = C^T(X^T X)^{-1} X^T \in \mathbb{R}^{r\times n}$. Thus, we can rewrite the hypothesis as $\mathrm{H} : B^T \xi = 0$. That is, under the null hypothesis $\xi$ lies in a $(p-r)$-dimensional subspace of $\Pi$. If we denote this $(p-r)$-dimensional subspace by $\omega$, then the testing problem becomes
$$ \begin{equation} \label{test} \mathrm{H} : \xi \in \omega \quad\mathrm{vs.}\quad \mathrm{K} : \xi\in\Pi. \end{equation} $$
In the following we will construct the uniformly most powerful test among all invariant tests for testing problems of this general form.
Orthogonal coordinate transformation
Let $Q\in\mathbb{R}^{n\times n}$ be an orthogonal matrix such that its first $p$ rows $q\subscript{1}, \dots, q\subscript{p}$ span $\Pi$, and such that $\mathrm{span}(q\subscript{r+1}, \dots, q\subscript{p}) = \omega$.
Let $z := Qy$, and denote $\eta := \mathrm{E}(z) = Q\xi$. It follows that
- $z\subscript{p+1} = \dots = z\subscript{n} = 0$ if and only if $y\in\Pi$,
- $z\subscript{1} = \dots = z\subscript{r} = 0$ and $z\subscript{p+1} = \dots = z\subscript{n} = 0$ if and only if $y\in\omega$.
Then the hypothesis H can be given can be given in a simpler form:
$$ \begin{equation} \label{orthotest} \mathrm{H} : \eta\subscript{1} = \dots = \eta\subscript{r} = 0. \end{equation} $$
Reduction of the problem via the principle of invariance
In general, we call a testing problem $\mathrm{H} : \xi \in \Omega\subscript{H}$ vs. $\mathrm{K} : \xi\in\Omega\subscript{K}$ invariant under a transformation $g$ of the sample space, if the induced transformation $\bar{g}$ on the parameter space preserves both $\Omega\subscript{H}$ and $\Omega\subscript{K}$, that is, if $\bar{g}\Omega = \Omega$, $\bar{g}\Omega\subscript{H} = \Omega\subscript{H}$ and $\bar{g}\Omega\subscript{K} = \Omega\subscript{K}$. See Section 6.1 in TSH for a more detailed definition. In the following, we denote by $G$ the group of all such transformations.
In the present case, the testing problem ($\ref{orthotest}$) remains invariant under the groups of transformations:
- All transformations of the form $z\subscript{i}^\prime = z\subscript{i} + c\subscript{i}$ with any $c\subscript{i}\in\mathbb{R}^{p-r}$ for $i = \{r+1, \ldots, p\}$.
- All orthogonal transformations of $z\subscript{1}, \ldots, z\subscript{r}$.
- All scale changes $z^\prime = cz$ with any $c\in\mathbb{R}$.
A function which is constant on each orbit of $G$, but takes on a different value for each orbit is called maximal invariant. See Section 6.2 in TSH for a more detailed definition.
In the present case, it is easy to derive (see Section 7.1 in TSH for a step-by-step derivation) that a maximal invariant under the above transformations is given by
$$ \begin{equation} \label{orthoteststat} W = \frac{\sum\subscript{i=1}^r z\subscript{i}^2 / r}{\sum\subscript{i=p+1}^n z\subscript{i}^2 / (n-p)}, \end{equation} $$
and a maximal invariant in the parameter space is given by
$$ \begin{equation} \label{psi} \psi^2 = \frac{\sum\subscript{i=1}^r \eta\subscript{i}^2}{\sigma^2}. \end{equation} $$
Thus, the principle of invariance reduces the problem ($\ref{test}$) to
$$ \begin{equation} \label{simplifiedtest} \mathrm{H} : \psi^2 = 0 \quad\mathrm{vs.}\quad \mathrm{K} : \psi^2 > 0. \end{equation} $$
Uniformly most powerful invariant test
Since $z \sim \mathcal{N}(\eta, \sigma^2 I)$, the expression in ($\ref{orthoteststat}$) makes it clear that $W \sim F\subscript{n-p}^r$ under the null hypothesis.
Now, Theorem 6.3.2 in TSH implies that the distribution of $W$ only depends on $\psi^2$. Additionally, it can be shown (see Problems 7.2 and 7.3 in TSH) that the likelihood ratio $\frac{p\subscript{\psi\subscript{1}}(w)}{p\subscript{0}(w)}$ is increasing in $w$ for any $\psi\subscript{1}$. Therefore, by the variant of the Neyman-Pearson fundamental lemma given in Theorem 3.4.1 in TSH, it follows that the uniformly most powerful invariant test of ($\ref{simplifiedtest}$) rejects H if and only if $W > C$, where $C$ is determined by
$$\int\subscript{C}^\infty F\subscript{n-p}^r(w) \mathrm{d}w = \alpha.$$
Moreover, it is worth pointing out that in the case that $r=1$, the test reduces to a two-sided $t$-test
$$ \begin{equation} \label{orthottest} t = \frac{|z\subscript{1}|}{\sqrt{\sum\subscript{i=p+1}^n z\subscript{i}^2 / (n-p)}} > C\subscript{0}. \end{equation} $$
This $t$-test is not only UMP invariant but also UMP unbiased (see Problem 5.5 in TSH).
Test statistic in terms of the original variables
Of course, in practice it is rather inconvenient having to find the orthogonal transform $z = Qy$. Therefore, we re-express the test statistic in terms of the original variables $y$.
Let $P = X(X^T X)^{-1}X^T$ and $\hat{\xi} = Py$. That is, $P$ is the orthogonal projection onto $\Pi$, and $\hat{\xi}$ is the least squares estimator of $\mathrm{E}(y) = \xi$.
Then $y - \hat{\xi}$ is orthogonal to $\Pi$ and $\hat{\xi}$ is orthogonal to $\Pi^c$. Therefore and by the orthogonality of $Q$ we have that
$$\sum\subscript{i=p+1}^n z\subscript{i}^2 = \|Q(y - \hat{\xi})\|\subscript{2}^2 = \|y - \hat{\xi}\|\subscript{2}^2.$$
Similarly we conclude that
$$\sum\subscript{i=1}^r z\subscript{i}^2 + \sum\subscript{i=p+1}^n z\subscript{i}^2 = \|y - \hat{\hat{\xi}}\|\subscript{2}^2,$$
where $\hat{\hat{\xi}}$ is the projection of $y$ onto $\omega$.
Thus, we can write the test statistic ($\ref{orthoteststat}$) as
$$ \begin{equation} \label{teststat} W = \frac{\left[\|y - \hat{\hat{\xi}}\|\subscript{2}^2 - \|y - \hat{\xi}\|\subscript{2}^2 \right] / r}{\|y - \hat{\xi}\|\subscript{2}^2 / (n-p)} = \frac{\|\hat{\xi} - \hat{\hat{\xi}}\|\subscript{2}^2 / r}{\|y - \hat{\xi}\|\subscript{2}^2 / (n-p)}. \end{equation} $$
Example: Derivation of the well-known t-test
Assume for some $c\in\mathbb{R}^p$ (i.e. $r=1$) we want to test $\mathrm{H} : c^T \beta = 0$. As discussed in the very beginning this test is equivalent to testing $\mathrm{H} : b^T \xi = 0$ where $b^T = c^T(X^T X)^{-1}X^T$. It follows that
$$ \begin{eqnarray} \hat{\xi} &=& X(X^T X)^{-1} X^T y, \nonumber \\\ \hat{\hat{\xi}} &=& \hat{\xi} - \frac{b^T y}{\|b\|\subscript{2}^2} b = \hat{\xi} - \frac{c^T \hat{\beta}}{\|b\|\subscript{2}^2} b, \nonumber \end{eqnarray} $$
where $\hat{\beta} = (X^T X)^{-1} X^T y$ is the usual least squares solution. Then it holds that
$$ \|\hat{\xi} - \hat{\hat{\xi}}\|\subscript{2}^2 = \left\|\frac{c^T \hat{\beta}}{\|b\|\subscript{2}^2} b \right\|\subscript{2}^2 = \frac{(c^T \hat{\beta})^2}{\|b\|\subscript{2}^2}, $$
and consequently ($\ref{teststat}$) becomes
$$W = \frac{(c^T \hat{\beta})^2}{s^2 c^T (X^T X)^{-1} c},$$
where $s^2 = \|y - \hat{\xi}\|\subscript{2}^2 / (n-p)$. As shown above, $W$ has the $F$ distribution with 1 and $(n-p)$ degrees of freedom. Thus, the statistic
$$t = \frac{c^T \hat{\beta}}{s \sqrt{c^T (X^T X)^{-1} c}}$$
has the $t$ distribution with $(n-p)$ degrees of freedom.
In particular, the hypothesis $\mathrm{H} : \beta\subscript{i} = 0$ is rejected if $|t| > t\subscript{\alpha/2, n-p}$, where the test statistic is given by
$$t = \frac{\hat{\beta}\subscript{i}}{s \sqrt{\left[(X^T X)^{-1}\right]\subscript{i,i}}}.$$